Reconstruction of medical images from CT and SPECT

a mathematician's point of view

Candidate: Davide Poggiali
Supervisor: Prof. Stefano De Marchi
Co-supervisor: Dr. Diego Cecchin

December 17, 2012

Axial Tomography machines provide result of some circular acquisitions. We discuss algorithms of reconstruction from projections and their efficiency in a few cases

- transmission tomography (e.g. CT): an electromagnetic ray passes trough the patient and is detected at the exit in order to get a morphological analysis of its interior.
■ emission tomography (e.g. PET, SPECT): a radioactive tracer is injected into the patient and detected by the machine in order to make an internal functional analysis of the organs.
■ hybrid tomography (e.g. SPECT/CT, SPECT/MRI): two simultaneous analysis.
We will focus on CT, SPECT and SPECT/CT problems.

Transmission tomography

Emission tomography

Rays

Resolution

$$
R_{c} \cong D+x \frac{D}{L_{e f f}}
$$

The resolution of the machine depends on the collimator resolution and on the intrinsic resolution (the resolution of the crystal and the electronics).

$$
R_{s}=\sqrt{R_{c}^{2}+R_{i}^{2}}
$$

Partial volume effect

If a ray passes through a body, it will be subject to attenuation. The Beer's law says that if $I(x)$ is the intensity of a ray and $A(x)$ the attenuation coefficient of the point x, then

$$
\frac{\Delta I}{\Delta x}=-A(x) I(x)
$$

that is, by integrating:

$$
\int_{x_{0}}^{x_{1}} A(x) d x=-\int_{x_{0}}^{x_{1}} \frac{d I}{l}=-\ln \left(I\left(x_{1}\right)-I\left(x_{0}\right)\right) .
$$

In transmission tomography, in 2 dimensions, the Beer's law corresponds to the Radon transform (RT), defined as the integral over a line

$$
\mathcal{R} f(t, \theta)=\int_{\ell_{(t, \theta)}} f=\int_{\mathbb{R}^{2}} f(\bar{x}) \delta(t-\bar{x} \cdot \bar{\theta}) d \bar{x}
$$

with $\bar{x}=(x, y), \bar{\theta}=(\cos \theta, \sin \theta)$

In transmission tomography, in 2 dimensions, the Beer's law corresponds to the Radon transform (RT), defined as the integral over a line

$$
\mathcal{R} f(t, \theta)=\int_{\ell_{(t, \theta)}} f=\int_{\mathbb{R}^{2}} f(\bar{x}) \delta(t-\bar{x} \cdot \bar{\theta}) d \bar{x}
$$

with $\bar{x}=(x, y), \bar{\theta}=(\cos \theta, \sin \theta)$ or equivalently:
$\mathcal{R} f(t, \theta)=\int_{\mathbb{R}} f(t \cos \theta-s \sin \theta, t \sin \theta+s \cos \theta) d s=\int_{\mathbb{R}} f\left(t \bar{\theta}+s \bar{\theta}^{\perp}\right) d s$
with $\bar{\theta}^{\perp}=(-\sin \theta, \cos \theta)$.

$$
\mathcal{R} f(t, \theta)=\int_{\mathbb{R}} f(t \cos \theta-s \sin \theta, t \sin \theta+s \cos \theta) d s
$$

Now we ask for every point (x, y) which is the average of the rays that pass through that point. This question is answered by the adjoint operator to \mathcal{R}, called Backprojection operator

$$
\begin{gathered}
\mathcal{R}^{*} g(x, y)=\frac{1}{\left|S^{1}\right|} \int_{S^{1}} g(x \cos \theta+y \sin \theta, \theta) d \theta= \\
\frac{1}{\left|S^{1}\right|} \int_{\mathbb{R} \times S^{1}} g(s, \theta) \delta(s-\bar{x} \cdot \bar{\theta}) d s d \theta
\end{gathered}
$$

where $S^{1}=[0, \pi]$ or $S^{1}=[0,2 \pi]$

Now we ask for every point (x, y) which is the average of the rays that pass through that point. This question is answered by the adjoint operator to \mathcal{R}, called Backprojection operator

$$
\begin{gathered}
\mathcal{R}^{*} g(x, y)=\frac{1}{\left|S^{1}\right|} \int_{S^{1}} g(x \cos \theta+y \sin \theta, \theta) d \theta= \\
\frac{1}{\left|S^{1}\right|} \int_{\mathbb{R} \times S^{1}} g(s, \theta) \delta(s-\bar{x} \cdot \bar{\theta}) d s d \theta
\end{gathered}
$$

where $S^{1}=[0, \pi]$ or $S^{1}=[0,2 \pi]$

Warning

\mathcal{R}^{*} is not the inverse transform of \mathcal{R}. In fact $\mathcal{R}^{*} \mathcal{R} f(\bar{x})=\frac{2}{|\bar{x}|} * f$

Why π or 2π ?

Introduction
Mathematical modeling of problem Analytical methods Iterative methods

Experiments

Why π or 2π ?

In the case of emission tomography things are more complicated.
From Beer's law we obtain that

$$
I\left(x_{1}\right)=I\left(x_{0}\right) \exp \left(-\int_{x_{0}}^{x_{1}} A(x) d x\right)
$$

Suppose to know the attenuation coefficient, say $a(\bar{x})$, we want to obtain the radioactivity $f(\bar{x})$ by its angular projections.

We define the attenuated Radon transform (briefly AtRT)

$$
\mathcal{R}_{a} f(t, \theta)=\int_{\ell_{(t, \theta)}} e^{-\mathcal{D} a(\bar{x}, \theta+\pi)} f(\bar{x})
$$

We define the attenuated Radon transform (briefly AtRT)

$$
\mathcal{R}_{a} f(t, \theta)=\int_{\ell_{(t, \theta)}} e^{-\mathcal{D} a(\bar{x}, \theta+\pi)} f(\bar{x})
$$

where \mathcal{D} is the Divergent beam transform defined as follows
$\mathcal{D} h(\bar{x}, \theta)=\int_{0}^{+\infty} h(x+t \cos \theta, y+t \sin \theta) d t=\int_{0}^{+\infty} h(\bar{x}+t \bar{\theta}) d t$

Then in the CT case we have to solve the following problem

RT problem

Given g projection data find f such that $\mathcal{R} f=g$

while in SPECT case we can approximate f with the solution of the previous problem

Then in the CT case we have to solve the following problem

RT problem

Given g projection data
find f such that $\mathcal{R} f=g$
while in SPECT case we can approximate f with the solution of the previous problem or solve

AtRT problem

Given g projection data and a attenuation map find f such that $\mathcal{R}_{a} f=g$

Then in the CT case we have to solve the following problem

RT problem

Given g projection data
find f such that $\mathcal{R} f=g$
while in SPECT case we can approximate f with the solution of the previous problem or solve

AtRT problem

Given g projection data and a attenuation map find f such that $\mathcal{R}_{a} f=g$

to estimate the attenuation map we may need a simultaneous CT tomography \longrightarrow SPECT/CT.

Theorem (Inversion of the Radon transform)

$$
f=\frac{1}{2} \mathcal{R}^{*}\left[\mathcal{F}^{-1}(|\nu| \mathcal{F}(\mathcal{R} f))\right]
$$

where we mean that the direct and inverse Fourier transform is applied only to the variable t.

Theorem (Inversion of the Radon transform)

$$
f=\frac{1}{2} \mathcal{R}^{*}\left[\mathcal{F}^{-1}(|\nu| \mathcal{F}(\mathcal{R} f))\right]
$$

where we mean that the direct and inverse Fourier transform is applied only to the variable t.

As known the previous formula is numerically inaccurate. Then we use $w(\nu)=p(\nu)|\nu|$ instead of $|\nu|$, with p a low-pass filter, getting the approximated

Filtered Back Projection formula (FBP)

$$
f \cong \frac{1}{2} \mathcal{R}^{*}\left[\mathcal{F}^{-1}(w(\nu) \mathcal{F}(\mathcal{R} f))\right]
$$

Introduction

Filtered Backprojection

Error bound
Novikov-Natterer formula

Original phantom $f(x, y)$

Fillered backprojection

sinogram: Radon transorm Rff(s,theta)

Unfiltered backprojection

Theorem (Error estimate)

Let $f \in C_{0}^{\infty}(B(0,1))$ be a b-band-limited function, and let $g=\mathcal{R} f$ be reliably sampled. Let \tilde{f} be the FBP reconstruction, then

$$
\|f-\tilde{f}\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leq 2\left|S^{1}\right|\left\|w_{b}\right\|_{L^{1}(\mathbb{R})}\|g-\tilde{g}\|_{L^{\infty}\left(\mathbb{R} \times S^{1}\right)}+\left|e_{3}\right|
$$

with e_{3} the quadrature error of the backprojection integral.

Introduction

Why these assumptions?

Introduction

Why these assumptions?

Also the attenuated transform has an inversion formula. Let by the following definitions:

Definition

Let $g(t)$ be a suitable function, then its Hilbert transform is the function

$$
\mathcal{H} g(s)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{g(t)}{s-t} d t
$$

where the integral a Cauchy principal value.

Definition

Let us define the function

$$
h:=\frac{1}{2}(I+i \mathcal{H}) \mathcal{R} a
$$

Theorem (Novikov-Natterer formula)

Let f be a transformable function $g=\mathcal{R}_{a} f$, and h as in the previous slide. Assume $a(\bar{x})$ known, then f is uniquely determined by the following formula

$$
f(\bar{x})=\frac{1}{4 \pi} \mathfrak{R e} \operatorname{div} \int_{S^{1}} \theta e^{\mathcal{D} a\left(\bar{x}, \theta+\frac{\pi}{2}\right)}\left(e^{-h} \mathcal{H} e^{h} g\right)_{(\bar{x} \cdot \bar{\theta}, \theta)} d \theta
$$

where $S^{1}=[0,2 \pi]$.

Introduction
Analytical methods Iterative methods Experiments

Filtered Backprojection

Error bound
Novikov-Natterer formula

Attenuation phantom

Reconstruction of the attenuation map

Activity phantom

Reconstruction of the activity

Given a basis of functions $\left\{b_{i}(\bar{x})\right\}_{i=1 \ldots n}$ that interpolates the function f, i.e. such that

$$
f(\bar{x})=\sum_{i=0}^{n} c_{i} b_{i}(\bar{x}) \quad \forall \bar{x} \in X
$$

where X is properly chosen, then for the linearity of the Radon transform

$$
\mathcal{R} f(\bar{y})=\sum_{i=0}^{n} c_{i} \mathcal{R} b_{i}(\bar{y}) \quad \forall \bar{y} \in Y=\left\{\left(t_{j}, \theta_{j}\right)\right\}
$$

This is equivalent to the solution of

$$
A f=c
$$

where $A(i, j)=\mathcal{R} b_{i}\left(t_{j}, \theta_{j}\right)$ is a matrix $N^{2} \times I p, f$ is the unknown vector such that $f_{i}=f\left(x_{i}\right)$ and c is the vector of the projection data $c_{j}=\mathcal{R} f\left(t_{j}, \theta_{j}\right)$.
The methods using this approach are known as Algebraic Reconstruction Techniques or ART.

Using the ART approach we may have to face some problems:

■ underdetermined \longrightarrow least squares
■ ill-conditioned \longrightarrow regularization
$■$ huge \longrightarrow sparseness

We choose the natural pixel basis

$$
b_{i}(x, y)=\chi_{P_{i}}(x, y)
$$

with P_{i} the i-th pixel of the reconstructed image. We know the Radon transform of each one of these items

$$
\mathcal{R} b_{i}(t, \theta)=\operatorname{meas}\left(\ell_{t, \theta} \cap P_{i}\right)
$$

where $\ell_{t, \theta}=\left\{t \bar{\theta}+s \bar{\theta}^{\perp} \mid s \in \mathbb{R}\right\}$.

Since the matrix A is large and sparse, we can solve the system $A f=c$ by iterative methods.

- the initial vector $f^{(0)}$ is a blank.
- the image at step $k, f^{(k)}$, is projected and compared with the data.
- the image is modified considering the error found in the previous step.
The following methods are the most popular

The Kaczmarz method projects the vector $f^{(k)}$ on k-th row of A.

$$
f^{(k+1)}=f^{(k)}+\frac{c_{i}-A_{i}^{T} \cdot f^{(k)}}{A_{i}^{T} \cdot A_{i}} A_{i}
$$

to increase the speed we use

$$
f^{(k+1)}=f^{(k)}+\lambda_{k} \frac{c_{i}-A_{i}^{T} \cdot f^{(k)}}{A_{i}^{T} \cdot A_{i}} A_{i}
$$

Maximum Likelihood Expectation Maximization (MLEM) is based on a probabilistic argument (the noise is assumed to be Poissonian).

$$
L(f)=P(c \mid f)=\prod_{i=1}^{l p} \frac{\left(c_{i}^{*}\right)^{c_{i}}}{c_{i}!} e^{-c_{i}^{*}}
$$

where $c^{*}=A f$ is the exact sinogram, i.e. the projection of the exact solution f. Equivalently, it maximizes

$$
I(f)=\log (L(f))=\sum_{i=1}^{\prime p}-(A f)_{i}+C_{i} \log (A f)_{i}+K
$$

scheme in a vectorial and multi-step form
$1 c^{f}:=A f^{(k)}$
$2 c^{q}:=c . / c^{f}$ (punctual division)
$3 f^{b}=A^{T} c^{a}$
$4 s_{j}=\sum_{i} a_{i, j}$
$5 f^{(k+1)}=f^{(k)} . * f^{b} . / s$ (product and division are made elementwise)

Least Squares Conjugate Gradient (LSCG) is the conjugate gradient method applied to the normal equation of the problem. Initialization phase:

- given $f^{(0)}$ initial value
- $s^{(0)}=c-A f^{(0)}$

■ $r^{(0)}=p^{(0)}=A^{T} s^{(0)}$

- $q^{(0)}=A p^{(0)}$
$\square \alpha=\frac{\left|r^{(k)}\right|^{2}}{\left|q^{(k)}\right|^{2}}$
$\square f^{(k+1)}=f^{(k)}+\alpha p^{(k)}$
$\square s^{(k+1)}=s^{(k)}-\alpha q^{(k)}$
$\square r^{(k+1)}=A^{T} S^{(k)}$
$\square \beta=\frac{\left|r^{(k+1)}\right|^{2}}{\left|r^{(k)}\right|^{2}}$
$\square p^{(k+1)}=r^{(k+1)}+\beta p^{(k)}$
$\square q^{(k+1)}=A p^{(k+1)}$
LSCG example

Now instead of the natural pixel basis we can use another basis:

$$
b_{i}(\bar{x})=B\left(\bar{x}-\bar{x}_{i}\right)=K\left(\bar{x}, \bar{x}_{i}\right)
$$

with B a (essentially) compact supported and radial.

Function name	f
Ball	$\chi_{B\left(\frac{1}{\varepsilon}, 0\right)}(r)$
Gaussian	$e^{-\varepsilon^{2} r^{2}}$
Wendland $\varphi_{2,0}$	$(1-\varepsilon r)_{+}^{2}$
Wu $\psi_{1,1}$	$(1-\varepsilon r)_{+}^{2}(\varepsilon r+2)$

with $r=\|x\|_{2}$.

Original phantom and kernel reconstruction with Gaussian kernel and shape parameter $\varepsilon=1$, after 50 iterations of LSCG.

Lemma

If $\phi(x)=\varphi(\|x\|)$ is a radial function, then its Radon transform $\mathcal{R} f$ is readial, i.e. it depends only on t and it is even.

Theorem

If $\phi(x-y)=K(x, y)$ is a radial function, $\phi \in L^{1}\left(\mathbb{R}^{d}\right)$, continuous, bounded and positive definite on \mathbb{R}^{2}, then its Radon transform $\mathcal{R} f(t)$ is bounded and positive definite on \mathbb{R}^{1}, provided $\mathcal{R} f \in L^{1}(\mathbb{R})$.

Theorem (Interpolation error bound for Kernel method)

Let $f \in C_{0}^{\infty}(B(0,1))$ a b-band-limited function, and let $g=\mathcal{R} f$ be reliably sampled. Let K be the interpolating Kernel function such that $\mathcal{R} K$ is a symmetric and strictly positive definite kernel and its domain Ω be such that $\partial \Omega$ has regularity at least C^{1}. Then there exist positive constants h_{0} and \tilde{C} such that, if $h_{X, \Omega} \leq h_{0}$, then

$$
\left\|f(\cdot)-\sum_{i=0}^{n} c_{i} K_{i}(\cdot)\right\|_{L^{\infty}} \leq 2\left|S^{1}\right| b \sqrt{\frac{N}{18}} \tilde{C} h_{X, \Omega}\|\mathcal{R} f\|_{\mathcal{N}_{\mathcal{R} K}(\Omega)}
$$

with $h_{X, \Omega}$ the meshsize.

Let us consider, as before, the basis $b_{i}(\bar{x})=\chi_{P_{i}}$ and assume

$$
f(\bar{x})=\sum_{i=0}^{n} c_{i} b_{i}(\bar{x})
$$

then for linearity

$$
\mathcal{R}_{a} f(\bar{y})=\sum_{i=0}^{n} c_{i} \mathcal{R}_{a} b_{i}(\bar{y}) \quad \forall \bar{y} \in Y=\left\{\left(t_{j}, \theta_{j}\right)\right\}
$$

i.e.

$$
B c=d
$$

where $B_{i, j}=\mathcal{R}_{a} b_{i}\left(t_{j}, \theta_{j}\right), c_{i}=f\left(\bar{x}_{i}\right)$ the unknown term and $d_{j}=\mathcal{R}_{a} f\left(t_{j}, \theta_{j}\right)$ the data.

In order to compute the matrix B we have to consider the attenuation coefficients in the natural pixel basis

$$
a(\bar{x})=\sum_{k=1}^{N^{2}} g_{k} \chi_{P_{k}}(\bar{x})
$$

According to Beer's law

$$
I_{\text {out }}=I_{\text {in }} \exp \left(-\sum_{k=1}^{N^{2}} g_{k} \operatorname{meas}\left(P_{k} \cap \ell_{\bar{x}, \theta}^{+}\right)\right)
$$

Now, if we consider the matrix A used in CT tomography we can compute the outgoing rays from the pixel P_{i} in $\left(t_{j}, \theta_{j}\right)$ as

$$
\begin{gathered}
B_{i, j}=A_{i, j} \exp \left(-\sum_{\left(k_{1}, k_{2}\right) \in K_{(i, j)}} g_{k} \operatorname{meas}\left(P_{k} \cap \ell_{t_{j}, \theta_{j}}\right)\right)= \\
A_{i, j} \exp \left(-\sum_{\left(k_{1}, k_{2}\right) \in K_{(i, j)}} g_{k} A_{k_{1}, k_{2}}\right)
\end{gathered}
$$

where $K_{(i, j)}=\left\{\left(k_{1}, k_{2}\right)\right\} \subset\left\{1, \ldots, N^{2}\right\}^{2}$ is the set s.t. $k=I p-\left(\left(k_{1}-1\right) p+k_{2}\right)+1$ are the indexes of the pixels covered by the line $\ell_{\bar{x}_{i}, \theta_{j}}^{+}$.

We can introduce a relaxation parameter $\lambda \in[0,1]$ to weight the effect of the attenuation

$$
B_{i, j}^{(\lambda)}=A_{i, j} \exp \left(-\lambda \sum_{\left(k_{1}, k_{2}\right) \in K_{(i, j)}} g_{k} A_{k_{1}, k_{2}}\right)
$$

Note that $B^{(0)}=A$ and $B^{(1)}=B$.
We observe that with this little change the linear system is more accurate.

Attenuation phantom

Reconstruction of the attenuation map

Activity phantom

Reconstruction of the activity

Analytical reconstruction of a SPECT/CT phantom data with $\lambda=0.1$.

Analytical methods

A test for the error bound using the standard "Ram-Lack" filter.

Time of resolution in seconds (left) and error (right) for the analytical and iterative methods for the resolution of the hybrid SPECT/CT simulated problem at several relative noise levels form 0 to 100\%.

Iterative methods

Time and error test for MLEM (upper) and LSCG (lower) at several iterations.

Error of the MLEM and LSCG algorithms with a noise of $\sigma=10 \%$ after several numbers of iterations.

Time of computation in seconds (left), error and error bound (right) in ∞-norm of the kernel method for the functions Gaussian (upper) and "ball" (lower) with several shape parameters $\varepsilon \in[0.5,10]$.

Comparison

Error of FBP, LSCG, and Gaussian algorithms as the relative error varies from 0 to 100%.

Computational times in seconds (left) and errors (right) for the LSCG and its kernel versions. Along x we have the number of iterations.

Essential bibliography

R
Feeman, The mathematics of medical imaging: A beginners guide, Springer, 2010

Hansen P.C., Hansen M., AIR Tools - A MATLAB Package of Algebraic Iterative Reconstruction Methods, Journal of Computational and Applied Mathematics, 2011

Natterer F., The mathematics of computerized tomography, SIAM: Society for Industrial and Applied Mathematic, 2001
䍰 Sironi A., Medical Image Reconstruction Using Kernel Based Methods, Master's Thesis, University of Padova, 2011

Toft P., The Radon transform; theory and implementation, Ph.D. thesis. Department of Mathematical Modeling, Technical University of Denmark, 1996

