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Axial Tomography machines provide result of some circular
acquisitions. We discuss algorithms of reconstruction from
projections and their efficiency in a few cases

transmission tomography (e.g. CT): an electromagnetic ray
passes trough the patient and is detected at the exit in order
to get a morphological analysis of its interior.

emission tomography (e.g. PET, SPECT): a radioactive tracer
is injected into the patient and detected by the machine in
order to make an internal functional analysis of the organs.

hybrid tomography (e.g. SPECT/CT, SPECT/MRI): two
simultaneous analysis.

We will focus on CT, SPECT and SPECT/CT problems.
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Resolution

Rc
∼= D + x

D

Leff

The resolution of the machine depends on the collimator resolution
and on the intrinsic resolution (the resolution of the crystal and the
electronics).

Rs =
√

R2
c + R2

i
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If a ray passes through a body, it will be subject to attenuation.
The Beer’s law says that if I (x) is the intensity of a ray and A(x)
the attenuation coefficient of the point x , then

∆I

∆x
= −A(x)I (x)

that is, by integrating:∫ x1

x0

A(x)dx = −
∫ x1

x0

dI

I
= −ln(I (x1)− I (x0)).
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In transmission tomography, in 2 dimensions, the Beer’s law
corresponds to the Radon transform (RT), defined as the integral
over a line

Rf (t, θ) =

∫
`(t,θ)

f =

∫
R2

f (x̄)δ(t − x̄ · θ̄) dx̄

with x̄ = (x , y), θ̄ = (cos θ, sin θ)

or equivalently:

Rf (t, θ) =

∫
R
f (t cos θ−s sin θ, t sin θ+s cos θ) ds =

∫
R
f (t θ̄+s θ̄⊥) ds

with θ̄⊥ = (− sin θ, cos θ).
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x
θ

t

s

Rf(t, θ)

y

Rf (t, θ) =

∫
R
f (t cos θ − s sin θ, t sin θ + s cos θ) ds
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Now we ask for every point (x , y) which is the average of the rays
that pass through that point. This question is answered by the
adjoint operator to R, called Backprojection operator

R∗g(x , y) =
1

|S1|

∫
S1

g(x cos θ + y sin θ, θ) dθ =

1

|S1|

∫
R×S1

g(s, θ)δ(s − x̄ · θ̄) dsdθ

where S1 = [0, π] or S1 = [0, 2π]

Warning

R∗ is not the inverse transform of R. In fact R∗Rf (x̄) = 2
|x̄ | ∗ f
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In the case of emission tomography things are more complicated.
From Beer’s law we obtain that

I (x1) = I (x0) exp

(
−
∫ x1

x0

A(x)dx

)
Suppose to know the attenuation coefficient, say a(x̄), we want to
obtain the radioactivity f (x̄) by its angular projections.
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We define the attenuated Radon transform (briefly AtRT)

Raf (t, θ) =

∫
`(t,θ)

e−Da(x̄ ,θ+π)f (x̄)

where D is the Divergent beam transform defined as follows

Dh(x̄ , θ) =

∫ +∞

0
h(x + t cos θ, y + t sin θ) dt =

∫ +∞

0
h(x̄ + t θ̄) dt
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Then in the CT case we have to solve the following problem

RT problem

Given g projection data
find f such that Rf = g

while in SPECT case we can approximate f with the solution of
the previous problem

or solve

AtRT problem

Given g projection data and a attenuation map
find f such that Raf = g

to estimate the attenuation map we may need a simultaneous CT
tomography −→ SPECT/CT.
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Theorem (Inversion of the Radon transform)

f =
1

2
R∗
[
F−1(|ν|F(Rf ))

]
where we mean that the direct and inverse Fourier transform is
applied only to the variable t.

As known the previous formula is numerically inaccurate. Then we
use w(ν) = p(ν)|ν| instead of |ν|, with p a low-pass filter, getting
the approximated

Filtered Back Projection formula (FBP)

f ∼= 1

2
R∗
[
F−1(w(ν)F(Rf ))

]
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Theorem (Error estimate)

Let f ∈ C∞0 (B(0, 1)) be a b-band-limited function, and let g = Rf
be reliably sampled. Let f̃ be the FBP reconstruction, then

‖f − f̃ ‖L∞(R2) ≤ 2|S1| ‖wb‖L1(R)‖g − g̃‖L∞(R×S1) + |e3|

with e3 the quadrature error of the backprojection integral.
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Also the attenuated transform has an inversion formula. Let by the
following definitions:

Definition

Let g(t) be a suitable function, then its Hilbert transform is the
function

Hg(s) =
1

π

∫
R

g(t)

s − t
dt

where the integral a Cauchy principal value.

Definition

Let us define the function

h :=
1

2
(I + iH)Ra
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Theorem (Novikov-Natterer formula)

Let f be a transformable function g = Raf , and h as in the
previous slide. Assume a(x̄) known, then f is uniquely determined
by the following formula

f (x̄) =
1

4π
Re div

∫
S1

θeDa(x̄ ,θ+π
2

)(e−hHehg)(x̄ ·θ̄,θ) dθ

where S1 = [0, 2π].
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Given a basis of functions {bi (x̄)}i=1...n that interpolates the
function f , i.e. such that

f (x̄) =
n∑

i=0

cibi (x̄) ∀x̄ ∈ X

where X is properly chosen, then for the linearity of the Radon
transform

Rf (ȳ) =
n∑

i=0

ciRbi (ȳ) ∀ȳ ∈ Y = {(tj , θj )}.
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This is equivalent to the solution of

Af = c

where A(i , j) = Rbi (tj , θj ) is a matrix N2 × lp, f is the unknown
vector such that fi = f (xi ) and c is the vector of the projection
data cj = Rf (tj , θj ).
The methods using this approach are known as Algebraic
Reconstruction Techniques or ART.
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Using the ART approach we may have to face some problems:

underdetermined −→ least squares

ill-conditioned −→ regularization

huge −→ sparseness
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We choose the natural pixel basis

bi (x , y) =χPi
(x , y).

with Pi the i-th pixel of the reconstructed image. We know the
Radon transform of each one of these items

Rbi (t, θ) = meas(`t,θ ∩ Pi )

where `t,θ = {t θ̄ + s θ̄⊥ | s ∈ R}.
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Since the matrix A is large and sparse, we can solve the system
Af = c by iterative methods.

the initial vector f (0) is a blank.

the image at step k, f (k), is projected and compared with the
data.

the image is modified considering the error found in the
previous step.

The following methods are the most popular
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The Kaczmarz method projects the vector f (k) on k-th row of A.

f (k+1) = f (k) +
ci − AT

i · f (k)

AT
i · Ai

Ai

to increase the speed we use

f (k+1) = f (k) + λk
ci − AT

i · f (k)

AT
i · Ai

Ai
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x(0)

x(1)

x(2)

x(3)

A1

A2

A3

x(4)

b

b

b

b

b b
b

f (k+1) = f (k) +
ci − AT

i · f (k)

AT
i · Ai

Ai
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Maximum Likelihood Expectation Maximization (MLEM) is based
on a probabilistic argument (the noise is assumed to be
Poissonian).

L(f ) = P(c |f ) =

lp∏
i=1

(c∗i )ci

ci !
e−c∗i

where c∗ = Af is the exact sinogram, i.e. the projection of the
exact solution f . Equivalently, it maximizes

l(f ) = log(L(f )) =

lp∑
i=1

−(Af )i + Ci log(Af )i + K
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scheme in a vectorial and multi-step form

1 c f := Af (k)

2 cq := c ./c f (punctual division)

3 f b = AT cq

4 sj =
∑

i ai ,j

5 f (k+1) = f (k). ∗ f b./s (product and division are made
elementwise)
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Least Squares Conjugate Gradient (LSCG) is the conjugate
gradient method applied to the normal equation of the problem.
Initialization phase:

given f (0) initial value

s(0) = c − Af (0)

r (0) = p(0) = AT s(0)

q(0) = Ap(0)
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α = |r (k)|2
|q(k)|2

f (k+1) = f (k) + αp(k)

s(k+1) = s(k) − αq(k)

r (k+1) = AT s(k)

β = |r (k+1)|2
|r (k)|2

p(k+1) = r (k+1) + βp(k)

q(k+1) = Ap(k+1)

LSCG example
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Now instead of the natural pixel basis we can use another basis:

bi (x̄) = B(x̄ − x̄i ) = K (x̄ , x̄i )

with B a (essentially) compact supported and radial.

Function name f

Ball χB( 1
ε
,0)(r)

Gaussian e−ε
2r2

Wendland ϕ2,0 (1− εr)2
+

Wu ψ1,1 (1− εr)2
+(εr + 2)

with r = ‖x‖2.
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Original phantom and kernel reconstruction with Gaussian kernel
and shape parameter ε = 1, after 50 iterations of LSCG.
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Lemma

If φ(x) = ϕ(‖x‖) is a radial function, then its Radon transform Rf
is readial, i.e. it depends only on t and it is even.

Theorem

If φ(x − y) = K (x , y) is a radial function, φ ∈ L1(Rd ), continuous,
bounded and positive definite on R2, then its Radon transform
Rf (t) is bounded and positive definite on R1, provided
Rf ∈ L1(R).
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Theorem (Interpolation error bound for Kernel method)

Let f ∈ C∞0 (B(0, 1)) a b-band-limited function, and let g = Rf be
reliably sampled. Let K be the interpolating Kernel function such
that RK is a symmetric and strictly positive definite kernel and its
domain Ω be such that ∂Ω has regularity at least C 1.
Then there exist positive constants h0 and C̃ such that, if
hX ,Ω ≤ h0, then

‖f (·)−
n∑

i=0

ciKi (·)‖L∞ ≤ 2|S1| b
√

N

18
C̃hX ,Ω‖Rf ‖NRK (Ω)

with hX ,Ω the meshsize.
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Let us consider, as before, the basis bi (x̄) =χPi
and assume

f (x̄) =
n∑

i=0

cibi (x̄)

then for linearity

Raf (ȳ) =
n∑

i=0

ciRabi (ȳ) ∀ȳ ∈ Y = {(tj , θj )}

i.e.
Bc = d

where Bi ,j = Rabi (tj , θj ), ci = f (x̄i ) the unknown term and
dj = Raf (tj , θj ) the data.
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In order to compute the matrix B we have to consider the
attenuation coefficients in the natural pixel basis

a(x̄) =
N2∑

k=1

gkχPk
(x̄).

According to Beer’s law

Iout = Iin exp

− N2∑
k=1

gk meas(Pk ∩ `+
x̄ ,θ)

 .
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Now, if we consider the matrix A used in CT tomography we can
compute the outgoing rays from the pixel Pi in (tj , θj ) as

Bi ,j = Ai ,j exp

− ∑
(k1,k2)∈K(i,j)

gk meas(Pk ∩ `tj ,θj
)

 =

Ai ,j exp

− ∑
(k1,k2)∈K(i,j)

gk Ak1,k2


where K(i ,j) = {(k1, k2)} ⊂ {1, . . . ,N2}2 is the set s.t.
k = lp − ((k1 − 1)p + k2) + 1 are the indexes of the pixels covered
by the line `+

x̄i ,θj
.
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We can introduce a relaxation parameter λ ∈ [0, 1] to weight the
effect of the attenuation

B
(λ)
i ,j = Ai ,j exp

−λ ∑
(k1,k2)∈K(i,j)

gk Ak1,k2


Note that B(0) = A and B(1) = B.
We observe that with this little change the linear system is more
accurate.

41 of 50



Introduction
Mathematical modeling of problem

Analytical methods
Iterative methods

Experiments

Algebraic reconstruction techniques
Kernel methods
SPECT/CT iterative method

Analytical reconstruction of a SPECT/CT phantom data with
λ = 0.1.
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Analytical methods

A test for the error bound using the standard “Ram-Lack” filter.
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Time of resolution in seconds (left) and error (right) for the
analytical and iterative methods for the resolution of the hybrid
SPECT/CT simulated problem at several relative noise levels form
0 to 100%.

44 of 50



Introduction
Mathematical modeling of problem

Analytical methods
Iterative methods

Experiments

Analytical methods
Iterative methods

Iterative methods

Time and error test for MLEM (upper) and LSCG (lower) at
several iterations.
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Error of the MLEM and LSCG algorithms with a noise of σ = 10%
after several numbers of iterations.
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Time of computation in seconds (left), error and error bound
(right) in ∞-norm of the kernel method for the functions Gaussian
(upper) and “ball” (lower) with several shape parameters
ε ∈ [0.5, 10].
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Comparison

Error of FBP, LSCG, and Gaussian algorithms as the relative error
varies from 0 to 100%.
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Computational times in seconds (left) and errors (right) for the
LSCG and its kernel versions. Along x we have the number of
iterations.
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