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Axial Tomography machines provide result of some circular
acquisitions. We discuss algorithms of reconstruction from
projections and their efficiency in a few cases

m transmission tomography (e.g. CT): an electromagnetic ray
passes trough the patient and is detected at the exit in order
to get a morphological analysis of its interior.

m emission tomography (e.g. PET, SPECT): a radioactive tracer
is injected into the patient and detected by the machine in
order to make an internal functional analysis of the organs.

m hybrid tomography (e.g. SPECT/CT, SPECT/MRI): two
simultaneous analysis.

We will focus on CT, SPECT and SPECT /CT problems.
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Resolution

Beer’s Law & resolution
Radon Transform
Backprojection
Attenuated transform

D
Re=D+x—

Lefr

The resolution of the machine depends on the collimator resolution
and on the intrinsic resolution (the resolution of the crystal and the

Ry = \/R2 + R?

electronics).
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If a ray passes through a body, it will be subject to attenuation.
The Beer's law says that if /(x) is the intensity of a ray and A(x)
the attenuation coefficient of the point x, then

Al

Ax = —A(x)I(x)

that is, by integrating:

/ﬂmmwz—/ﬁ7=—mmm—um»
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In transmission tomography, in 2 dimensions, the Beer’s law
corresponds to the Radon transform (RT), defined as the integral

over a line

Rf(t,0) _/K f= /R2 f(x)o(t — x - 0) dx
TN

with X = (x,y), § = (cos,sin )
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In transmission tomography, in 2 dimensions, the Beer’s law
corresponds to the Radon transform (RT), defined as the integral
over a line

Rf(t,e)_/ f_/ f(x)o(t — x - 0) dx

@(t,e) . R2

with X = (x,y), § = (cos,sin #) or equivalently:

RFf(t,0) = / f(tcosf—ssinf, tsinf+scosh) ds = / f(t0+s6) ds
R R

with 1 = (—sin 6, cos ).
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Rf(t,0) = | f(tcos® —ssinf, tsinh + scosf) ds
R
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Now we ask for every point (x,y) which is the average of the rays
that pass through that point. This question is answered by the
adjoint operator to ‘R, called Backprojection operator

1
Rig(x,y) = S| /51 g(xcosf + ysin6,0) db =

1

‘51‘ RxS1

where St = [0, 7] or S = [0, 27]

g(s,0)6(s — x - ) dsdf

I haw
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Now we ask for every point (x,y) which is the average of the rays
that pass through that point. This question is answered by the
adjoint operator to ‘R, called Backprojection operator

1
Rig(x,y) = S| /Slg(xcose +ysin6,0) df =

1
‘51‘ RxS1
where St = [0, 7] or S = [0, 27]

g(s,0)5(s — x - 0) dsdf

R* is not the inverse transform of R. In fact R*Rf(x) = % * f
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In the case of emission tomography things are more complicated.

From Beer’s law we obtain that

1) = 1(x0) exp (— /:1 A(x)dx>

0

Suppose to know the attenuation coefficient, say a(x), we want to
obtain the radioactivity f(X) by its angular projections.
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R.f(t,0) = / e~ Pax0+7m) ()
£t,0)
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We define the attenuated Radon transform (briefly AtRT)

R.f(t,0) = / e~ Pax0+7m) ()
£t,0)

where D is the Divergent beam transform defined as follows

»+00 +00 _
h(x + tcosf,y + tsinf) dt/ h(x + t0) dt

0

Dh(x,0) = /

0
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Then in the CT case we have to solve the following problem

RT problem

Given g projection data
find f such that Rf = g

while in SPECT case we can approximate f with the solution of

the previous problem

I
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Then in the CT case we have to solve the following problem

RT problem

Given g projection data
find f such that Rf = g

while in SPECT case we can approximate f with the solution of
the previous problem or solve

AtRT problem

Given g projection data and a attenuation map
find f such that R,f = g

I aw



Introduction Beer's Law & resolution
Mathematical modeling of problem Radon Transform
Analytical methods Backprojection
Iterative methods Attenuated transform

Experiments _

Then in the CT case we have to solve the following problem

RT problem

Given g projection data
find f such that Rf = g

while in SPECT case we can approximate f with the solution of
the previous problem or solve

AtRT problem

Given g projection data and a attenuation map
find f such that R,f = g

to estimate the attenuation map we may need a simultaneous CT
tomography — SPECT /CT.
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Theorem (Inversion of the Radon transform)

F= SR [FH(WF(RN)

where we mean that the direct and inverse Fourier transform is
applied only to the variable t.
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Theorem (Inversion of the Radon transform)

F= SR [FH(WF(RN)

where we mean that the direct and inverse Fourier transform is
applied only to the variable t.

As known the previous formula is numerically inaccurate. Then we
use w(v) = p(v)|v| instead of |v|, with p a low-pass filter, getting
the approximated

Filtered Back Projection formula (FBP)

Q

1
2




Introduction

Mathematical modeling of problem Filtered Backprojection
Analytical methods Error bound
Iterative methods Novikov-Natterer formula

Experiments

Original phantom (x,y) sinogram: Radon transomm Ri(s theta)

D] =

Filtered backprojection

Unfitered hackprojection




Introduction

Mathematical modeling of problem Filtered Backprojection
Analytical methods Error bound
Iterative methods Novikov-Natterer formula

Experiments

Theorem (Error estimate)

Let f € C5°(B(0,1)) be a b-band-limited function, and let g = Rf
be reliably sampled. Let f be the FBP reconstruction, then

I — Fllpoorey < 2ISY] 1wl ryllg — &llioo(rxs1) + les]

with e3 the quadrature error of the backprojection integral.
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Also the attenuated transform has an inversion formula. Let by the
following definitions:

Let g(t) be a suitable function, then its Hilbert transform is the

function )
Hg(s) = / (1) dt
T JR

G=1

where the integral a Cauchy principal value.

Let us define the function

1
h:= (/ + iH)Ra

Be——



Introduction

Mathematical modeling of problem Filtered Backprojection
Analytical methods Error bound
Iterative methods Novikov-Natterer formula

Experiments

Theorem (Novikov-Natterer formula)

Let f be a transformable function g = R,f, and h as in the

previous slide. Assume a(x) known, then f is uniquely determined
by the following formula

]_ = T
(%) = e div 0eP2X0T2) (e Helg) 5.5,y dO

Sl

where S! = [0, 27].
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Given a basis of functions {b;(x)}i=1.., that interpolates the
function f, i.e. such that

f()?) = i C,'b,'()_() Vx € X
i=0

where X is properly chosen, then for the linearity of the Radon
transform

RF() =D cRbi(y)  VyeY={(t,6)}
i=0

I maw
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This is equivalent to the solution of
Af =c

where A(i,j) = Rbi(tj,0;) is a matrix N x Ip, f is the unknown
vector such that f; = f(x;) and c is the vector of the projection
data ¢ = Rf(tj, Gj).

The methods using this approach are known as Algebraic
Reconstruction Techniques or ART.

I aaw
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Using the ART approach we may have to face some problems:

m underdetermined — least squares
m ill-conditioned — regularization

m huge — sparseness

B muw
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We choose the natural pixel basis

bf(va) - XP,-(X7y)'

with P; the j-th pixel of the reconstructed image. We know the
Radon transform of each one of these items

Rbi(t,0) = meas(Lrg N P;)

where £,y = {t0 + s0* | s € R}.
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Since the matrix A is large and sparse, we can solve the system
Af = c by iterative methods.

m the initial vector () is a blank.

m the image at step k, £(K), is projected and compared with the
data.

m the image is modified considering the error found in the
previous step.

The following methods are the most popular
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The Kaczmarz method projects the vector f(¥) on k-th row of A.

. AT . f(k
by _ gy G AT FE
AT - A;

to increase the speed we use

i T k
f(k+1) _ f(k)+)\kCI —A,- . f( )

A
AT A;

I maw
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Maximum Likelihood Expectation Maximization (MLEM) is based
on a probabilistic argument (the noise is assumed to be
Poissonian).

Ip *\Ci
L(f)=P(cIf)=]] (&) e

i=1

C,'!

where ¢* = Af is the exact sinogram, i.e. the projection of the
exact solution f. Equivalently, it maximizes

Ip

I(f) =log(L(f)) =Y _ —(Af); + C;log(Af); + K
i=1

B waw
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scheme in a vectorial and multi-step form

cf = AF(K)
c9 := c./c’ (punctual division)
b= ATca

Bsi=>,a;
Flk+1) — (k) fb./s (product and division are made
elementwise)

I aaw
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Least Squares Conjugate Gradient (LSCG) is the conjugate
gradient method applied to the normal equation of the problem.
Initialization phase:

m given F(9 initial value
m 5O =c— AFO)

m (0 = p0) = AT5(0)
m g0 = Ap®

I saw
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rp2
g2

FH1) — £(K) 4 qp(k)
s(kt1) = 5(k) — q(k)

rlk+1) — AT 5(K)
N ‘r(k+1)‘2
B - ‘r(k)‘2

] p(k+1) = r(k+1) + ﬁp(k)
m gkt — Ap(kt1)

0=

~

LSCG example

I saw
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Now instead of the natural pixel basis we can use another basis:

’ Function name ‘ f
Ball XB(17O)(r)
Gaussian e=r
Wendland ¢3 o (1—er)?
Wu 11 1 (1—er)i(er+2)
with r = [|x]|2.
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Original phantom and kernel reconstruction with Gaussian kernel
and shape parameter ¢ = 1, after 50 iterations of LSCG.
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Lemma

If ¢(x) = ¢(||x]|) is a radial function, then its Radon transform Rf
is readial, i.e. it depends only on t and it is even.

If (x —y) = K(x,y) is a radial function, ¢ € L}(R9), continuous,
bounded and positive definite on R?, then its Radon transform
Rf(t) is bounded and positive definite on R?, provided

Rf € L}(R).

I waw
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Theorem (Interpolation error bound for Kernel method)

Let f € C§°(B(0,1)) a b-band-limited function, and let g = Rf be
reliably sampled. Let K be the interpolating Kernel function such
that RK is a symmetric and strictly positive definite kernel and its
domain Q be such that 9Q has regularity at least C*.

Then there exist positive constants hg and C such that, if

hX,Q < hg, then

N -
1F() — Zc, (e < 2|SY b\/; Chx. [ RF |k (@)

with hx o the meshsize.
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Let us consider, as before, the basis b;(x) = X p. and assume

F(x)=>_ cibi(x)
i=0
then for linearity

Rof(y) =D ciRabi(y) Yy €Y ={(t,0)}
i=0

Bc =d

where B; j = R,bi(tj,0;), ¢; = f(X;) the unknown term and
dj = Raf(tj,ej) the data.
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In order to compute the matrix B we have to consider the
attenuation coefficients in the natural pixel basis

N2
a(%) = aXp, (X)-
k=1
According to Beer's law

N2
loute = lin exp | — ng meas(Py N 6;9)
k=1

I waw
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Now, if we consider the matrix A used in CT tomography we can
compute the outgoing rays from the pixel P; in (t;,6;) as

Bij=Aijexp|— Z gk meas(Px Nty )
(ki,k2)EK(i j)

Aij exp | — Z 8k Aky ks
(kl,kg)EK(,-J)

where K(; jy = {(k1, k2)} C {1,..., N?}? is the set s.t.
k =Ip — ((ki —1)p + ko) + 1 are the indexes of the pixels covered
by the line Kjg_ 6
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We can introduce a relaxation parameter A € [0, 1] to weight the
effect of the attenuation

A
Bi(,j) = A,'J' exp —A Z 8k A/q,kz

(k1,k2)EK(i j)

Note that B(®) = A and B = B.
We observe that with this little change the linear system is more
accurate.
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attenuation phantom Activity phantom

Reconsiruction of the attenuation map

Reconstuction of the activity

Analytical reconstruction of a SPECT/CT phantom data with
A=0.1
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Analytical methods
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Noise on Radon data in log10 scale

A test for the error bound using the standard “Ram-Lack” filter.
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1 —+— analytical method
14 —o— iferative method

Time of resolution in seconds (left) and error (right) for the
analytical and iterative methods for the resolution of the hybrid

SPECT /CT simulated problem at several relative noise levels form
0 to 100%.
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[terative methods

e o sempaston o s 150
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Hober ofi-wions

Time and error test for MLEM (upper) and LSCG (lower) at
several iterations.
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Erfor for K iterations of MLEM, with a relative noise of 10% Error for K terations of LSCG, with a relative noise of 10%

e 05769

0558
05769

05565
0558 05768

05575
05768

0557
05565 05767

0556
05767

05555

0555

o 200 400 600 800 1000 o 200 400 600 800 1000

number of iterations number of iterations

Error of the MLEM and LSCG algorithms with a noise of o = 10%
after several numbers of iterations.
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Time of computation in seconds (left), error and error bound
(right) in oco-norm of the kernel method for the functions Gaussian
(upper) and “ball” (lower) with several shape parameters

e € [0.5,10].
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0 01 0z 03 04 05 05 07 08 03 1

Error of FBP, LSCG, and Gaussian algorithms as the relative error
varies from 0 to 100%.
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——Lsca
—o— Gaussian
—+— Wendland

Computational times in seconds (left) and errors (right) for the
LSCG and its kernel versions. Along x we have the number of
iterations.
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