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Calendar of seminars

May 14 Introduction to Analytic Tomography
general introduction, Radon tranform, FBP

May 21 Reconstruction in X-ray computed tomography
iterative methods, kernel methods

May 28 The mathematics behind SPECT/TC reconstruction
analytical and iterative hybrid reconstruction

June 4 Resolution of a Gamma Camera: experimental data and
analytical formula
resolution formulas

June 11 An alternative Radon transform for the correction of partial
volume effect
a modest proposal..
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What is Analytic Tomography
Resolution and other technical issues

Axial Tomography machines provide result of some circular
acquisitions. We discuss algorithms of reconstruction from
projections and their efficiency in a few cases

transmission tomography (e.g. CT): an electromagnetic ray
passes trough the patient and is detected at the exit in order
to get a morphological analysis of its interior.

emission tomography (e.g. PET, SPECT): a radioactive tracer
is injected into the patient and detected by the machine in
order to make an internal functional analysis of the organs.

hybrid tomography (e.g. SPECT/CT, SPECT/MRI): two
simultaneous analysis.

We will focus on CT, SPECT and SPECT/CT problems.
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Resolution

Rc = D

(
1 +

x + c

Leff

)
The resolution of the machine depends on the collimator resolution
and on the intrinsic resolution (the resolution of the crystal and the
electronics).

Rs =
√

R2
c + R2

i
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In order to model correctly the tomography machine we will make
some assumptions:

all rays have no width and we can consider them as straight
lines.

all rays at angle θ are parallel.

the machine runs l scans at the angles (θ1, . . . , θl ); the
detectors move on a circle (typically l = 120, 60).

for each scan j ∈ 1, . . . , l the machine gets p linear samples
(typically p = N, or p = 128 or p = 64).

the total time of acquisition is relatively short so is indifferent
to run an acquisition before or after another one.

the reconstructed image has dimension N × N (typically
N = 128 or N = 64).
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If a ray passes through a body, it will be subject to attenuation.
The Beer’s law says that if I (x) is the intensity of a ray and A(x)
the attenuation coefficient of the point x , then

∆I

∆x
= −A(x)I (x)

that is, by integrating:∫ x1

x0

A(x)dx = −
∫ x1

x0

dI

I
= −ln(I (x1)− I (x0)).
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In transmission tomography, in 2 dimensions, the Beer’s law
corresponds to the Radon transform (RT), defined as the integral
over a line

Rf (t, θ) =

∫
`(t,θ)

f =

∫
R2

f (x̄)δ(t − x̄ · θ̄) dx̄

with x̄ = (x , y), θ̄ = (cos θ, sin θ)

or equivalently:

Rf (t, θ) =

∫
R
f (t cos θ−s sin θ, t sin θ+s cos θ) ds =

∫
R
f (t θ̄+s θ̄⊥) ds

with θ̄⊥ = (− sin θ, cos θ).
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x
θ

t

s

Rf(t, θ)

y

Rf (t, θ) =

∫
R
f (t cos θ − s sin θ, t sin θ + s cos θ) ds
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Now we ask for every point (x , y) which is the average of the rays
that pass through that point. This question is answered by the
adjoint operator to R, called Backprojection operator

R∗g(x , y) =
1

|S1|

∫
S1

g(x cos θ + y sin θ, θ) dθ =

1

|S1|

∫
R×S1

g(s, θ)δ(s − x̄ · θ̄) dsdθ

where S1 = [0, π] or S1 = [0, 2π]

Warning

R∗ is not the inverse transform of R. In fact R∗Rf (x̄) = 2
|x̄ | ∗ f
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Why π or 2π?

Rf (−t, θ + π) = Rf (t, θ)
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In the case of emission tomography things are more complicated.
From Beer’s law we obtain that

I (x1) = I (x0) exp

(
−
∫ x1

x0

A(x)dx

)
Suppose to know the attenuation coefficient, say a(x̄), we want to
obtain the radioactivity f (x̄) by its angular projections.
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We define the attenuated Radon transform (briefly AtRT)

Raf (t, θ) =

∫
`(t,θ)

e−Da(x̄ ,θ+π)f (x̄)

where D is the Divergent beam transform defined as follows

Dh(x̄ , θ) =

∫ +∞

0
h(x + t cos θ, y + t sin θ) dt =

∫ +∞

0
h(x̄ + t θ̄) dt
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Then in the CT case we have to solve the following problem

RT problem

Given g projection data
find f such that Rf = g

while in SPECT case we can approximate f with the solution of
the previous problem

or solve

AtRT problem

Given g projection data and a attenuation map
find f such that Raf = g

to estimate the attenuation map we may need a simultaneous CT
tomography −→ SPECT/CT.
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Central Slice Theorem

Let f be a Fourier and Radon transformable function. Then

F2f (T cos θ,T sin θ) = F (Rf ) (T , θ)

Where we mean for F2 the 2-dimensional Fourier transform and F
the 1-dimensional Fourier transform applied only to the variable t.
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F1F2
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Theorem (Inversion of the Radon transform)

f =
1

2
R∗
[
F−1(|ν|F(Rf ))

]
where we mean that the direct and inverse Fourier transform is
applied only to the variable t.

As known the previous formula is numerically inaccurate. Then we
use w(ν) = p(ν)|ν| instead of |ν|, with p a low-pass filter, getting
the approximated

Filtered Back Projection formula (FBP)

f ∼= 1

2
R∗
[
F−1(w(ν)F(Rf ))

]
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Theorem (Error estimate)

Let f ∈ C∞0 (B(0, 1)) be a b-band-limited function, and let g = Rf
be reliably sampled. Let f̃ be the FBP reconstruction, then

‖f − f̃ ‖L∞(R2) ≤ 2|S1| ‖wb‖L1(R)‖g − g̃‖L∞(R×S1) + |e3|

with e3 the quadrature error of the backprojection integral.
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Analytical methods

A test for the error bound using the standard “Ram-Lack” filter.
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