Introduction to Analytic Thomography

Davide Poggiali

May 14, 2013

Calendar of seminars

May 14 Introduction to Analytic Tomography general introduction, Radon tranform, FBP
May 21 Reconstruction in X-ray computed tomography iterative methods, kernel methods
May 28 The mathematics behind SPECT/TC reconstruction analytical and iterative hybrid reconstruction
June 4 Resolution of a Gamma Camera: experimental data and analytical formula resolution formulas

June 11 An alternative Radon transform for the correction of partial volume effect
a modest proposal..

Axial Tomography machines provide result of some circular acquisitions. We discuss algorithms of reconstruction from projections and their efficiency in a few cases

- transmission tomography (e.g. CT): an electromagnetic ray passes trough the patient and is detected at the exit in order to get a morphological analysis of its interior.
■ emission tomography (e.g. PET, SPECT): a radioactive tracer is injected into the patient and detected by the machine in order to make an internal functional analysis of the organs.
■ hybrid tomography (e.g. SPECT/CT, SPECT/MRI): two simultaneous analysis.
We will focus on CT, SPECT and SPECT/CT problems.

Transmission tomography

Emission tomography

Rays

Resolution

$$
R_{c}=D\left(1+\frac{x+c}{L_{\text {eff }}}\right)
$$

The resolution of the machine depends on the collimator resolution and on the intrinsic resolution (the resolution of the crystal and the electronics).

$$
R_{s}=\sqrt{R_{c}^{2}+R_{i}^{2}}
$$

FWHM

FWHM

Partial volume effect

Scattering

In order to model correctly the tomography machine we will make some assumptions:

- all rays have no width and we can consider them as straight lines.
- all rays at angle θ are parallel.
- the machine runs $/$ scans at the angles $\left(\theta_{1}, \ldots, \theta_{I}\right)$; the detectors move on a circle (typically $I=120,60$).
- for each scan $j \in 1, \ldots$, I the machine gets p linear samples (typically $p=N$, or $p=128$ or $p=64$).
- the total time of acquisition is relatively short so is indifferent to run an acquisition before or after another one.
- the reconstructed image has dimension $N \times N$ (typically

$$
N=128 \text { or } N=64) .
$$

If a ray passes through a body, it will be subject to attenuation. The Beer's law says that if $I(x)$ is the intensity of a ray and $A(x)$ the attenuation coefficient of the point x, then

$$
\frac{\Delta I}{\Delta x}=-A(x) I(x)
$$

that is, by integrating:

$$
\int_{x_{0}}^{x_{1}} A(x) d x=-\int_{x_{0}}^{x_{1}} \frac{d I}{l}=-\ln \left(I\left(x_{1}\right)-I\left(x_{0}\right)\right) .
$$

In transmission tomography, in 2 dimensions, the Beer's law corresponds to the Radon transform (RT), defined as the integral over a line

$$
\mathcal{R} f(t, \theta)=\int_{\ell_{(t, \theta)}} f=\int_{\mathbb{R}^{2}} f(\bar{x}) \delta(t-\bar{x} \cdot \bar{\theta}) d \bar{x}
$$

with $\bar{x}=(x, y), \bar{\theta}=(\cos \theta, \sin \theta)$

In transmission tomography, in 2 dimensions, the Beer's law corresponds to the Radon transform (RT), defined as the integral over a line

$$
\mathcal{R} f(t, \theta)=\int_{\ell_{(t, \theta)}} f=\int_{\mathbb{R}^{2}} f(\bar{x}) \delta(t-\bar{x} \cdot \bar{\theta}) d \bar{x}
$$

with $\bar{x}=(x, y), \bar{\theta}=(\cos \theta, \sin \theta)$ or equivalently:
$\mathcal{R} f(t, \theta)=\int_{\mathbb{R}} f(t \cos \theta-s \sin \theta, t \sin \theta+s \cos \theta) d s=\int_{\mathbb{R}} f\left(t \bar{\theta}+s \bar{\theta}^{\perp}\right) d s$
with $\bar{\theta}^{\perp}=(-\sin \theta, \cos \theta)$.

Introduction
Mathematical modeling of problem Analytical methods Experiments

$\mathcal{R} f(t, \theta)=\int_{\mathbb{R}} f(t \cos \theta-s \sin \theta, t \sin \theta+s \cos \theta) d s$

Now we ask for every point (x, y) which is the average of the rays that pass through that point. This question is answered by the adjoint operator to \mathcal{R}, called Backprojection operator

$$
\begin{gathered}
\mathcal{R}^{*} g(x, y)=\frac{1}{\left|S^{1}\right|} \int_{S^{1}} g(x \cos \theta+y \sin \theta, \theta) d \theta= \\
\frac{1}{\left|S^{1}\right|} \int_{\mathbb{R} \times S^{1}} g(s, \theta) \delta(s-\bar{x} \cdot \bar{\theta}) d s d \theta
\end{gathered}
$$

where $S^{1}=[0, \pi]$ or $S^{1}=[0,2 \pi]$

Now we ask for every point (x, y) which is the average of the rays that pass through that point. This question is answered by the adjoint operator to \mathcal{R}, called Backprojection operator

$$
\begin{gathered}
\mathcal{R}^{*} g(x, y)=\frac{1}{\left|S^{1}\right|} \int_{S^{1}} g(x \cos \theta+y \sin \theta, \theta) d \theta= \\
\frac{1}{\left|S^{1}\right|} \int_{\mathbb{R} \times S^{1}} g(s, \theta) \delta(s-\bar{x} \cdot \bar{\theta}) d s d \theta
\end{gathered}
$$

where $S^{1}=[0, \pi]$ or $S^{1}=[0,2 \pi]$

Warning

\mathcal{R}^{*} is not the inverse transform of \mathcal{R}. In fact $\mathcal{R}^{*} \mathcal{R} f(\bar{x})=\frac{2}{|\bar{x}|} * f$

Why π or 2π ?

Introduction Mathematical modeling of problem Analytical methods Experiments

Beer's Law

Why π or 2π ?

In the case of emission tomography things are more complicated. From Beer's law we obtain that

$$
I\left(x_{1}\right)=I\left(x_{0}\right) \exp \left(-\int_{x_{0}}^{x_{1}} A(x) d x\right)
$$

Suppose to know the attenuation coefficient, say $a(\bar{x})$, we want to obtain the radioactivity $f(\bar{x})$ by its angular projections.

We define the attenuated Radon transform (briefly AtRT)

$$
\mathcal{R}_{a} f(t, \theta)=\int_{\ell_{(t, \theta)}} e^{-\mathcal{D} a(\bar{x}, \theta+\pi)} f(\bar{x})
$$

We define the attenuated Radon transform (briefly AtRT)

$$
\mathcal{R}_{a} f(t, \theta)=\int_{\ell_{(t, \theta)}} e^{-\mathcal{D} a(\bar{x}, \theta+\pi)} f(\bar{x})
$$

where \mathcal{D} is the Divergent beam transform defined as follows
$\mathcal{D} h(\bar{x}, \theta)=\int_{0}^{+\infty} h(x+t \cos \theta, y+t \sin \theta) d t=\int_{0}^{+\infty} h(\bar{x}+t \bar{\theta}) d t$

Then in the CT case we have to solve the following problem

RT problem

Given g projection data
 find f such that $\mathcal{R} f=g$

while in SPECT case we can approximate f with the solution of the previous problem

Then in the CT case we have to solve the following problem

RT problem

> Given g projection data
> find f such that $\mathcal{R} f=g$
while in SPECT case we can approximate f with the solution of the previous problem or solve

AtRT problem

Given g projection data and a attenuation map find f such that $\mathcal{R}_{a} f=g$

RT problem

Then in the CT case we have to solve the following problem

> Given g projection data
> find f such that $\mathcal{R} f=g$
while in SPECT case we can approximate f with the solution of the previous problem or solve

AtRT problem

Given g projection data and a attenuation map find f such that $\mathcal{R}_{a} f=g$

to estimate the attenuation map we may need a simultaneous CT tomography \longrightarrow SPECT/CT.

Central Slice Theorem

Let f be a Fourier and Radon transformable function. Then

$$
\mathcal{F}_{2} f(T \cos \theta, T \sin \theta)=\mathcal{F}(\mathcal{R} f)(T, \theta)
$$

Where we mean for \mathcal{F}_{2} the 2-dimensional Fourier transform and \mathcal{F} the 1-dimensional Fourier transform applied only to the variable t.

Introduction
Mathematical modeling of problem Analytical methods

Experiments

Filtered Backprojection
Error bound

Theorem (Inversion of the Radon transform)

$$
f=\frac{1}{2} \mathcal{R}^{*}\left[\mathcal{F}^{-1}(|\nu| \mathcal{F}(\mathcal{R} f))\right]
$$

where we mean that the direct and inverse Fourier transform is applied only to the variable t.

Theorem (Inversion of the Radon transform)

$$
f=\frac{1}{2} \mathcal{R}^{*}\left[\mathcal{F}^{-1}(|\nu| \mathcal{F}(\mathcal{R} f))\right]
$$

where we mean that the direct and inverse Fourier transform is applied only to the variable t.

As known the previous formula is numerically inaccurate. Then we use $w(\nu)=p(\nu)|\nu|$ instead of $|\nu|$, with p a low-pass filter, getting the approximated

Filtered Back Projection formula (FBP)

$$
f \cong \frac{1}{2} \mathcal{R}^{*}\left[\mathcal{F}^{-1}(w(\nu) \mathcal{F}(\mathcal{R} f))\right]
$$

Introduction
Mathematical modeling of problem
Analytical methods
Experiments

Filtered Backprojection

Error bound

Driginal phantom (f, y)

Filtered backprojection

sinogram: Radon transorm Rffs, theta)

Unfiltered backprojection

Theorem (Error estimate)

Let $f \in C_{0}^{\infty}(B(0,1))$ be a b-band-limited function, and let $g=\mathcal{R} f$ be reliably sampled. Let \tilde{f} be the FBP reconstruction, then

$$
\|f-\tilde{f}\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leq 2\left|S^{1}\right|\left\|w_{b}\right\|_{L^{1}(\mathbb{R})}\|g-\tilde{g}\|_{L^{\infty}\left(\mathbb{R} \times S^{1}\right)}+\left|e_{3}\right|
$$

with e_{3} the quadrature error of the backprojection integral.

Why these assumptions?

Why these assumptions?

Analytical methods

A test for the error bound using the standard "Ram-Lack" filter.

Essential bibliography

显
Feeman, The mathematics of medical imaging: A beginners guide, Springer, 2010

Hansen P.C., Hansen M., AIR Tools - A MATLAB Package of Algebraic Iterative Reconstruction Methods, Journal of Computational and Applied Mathematics, 2011

Natterer F., The mathematics of computerized tomography, SIAM: Society for Industrial and Applied Mathematic, 2001

Sironi A., Medical Image Reconstruction Using Kernel Based Methods, Master's Thesis, University of Padova, 2011Toft P., The Radon transform; theory and implementation, Ph.D. thesis. Department of Mathematical Modeling, Technical University of Denmark, 1996

