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Calendar of seminars

Sept. 19 Physical Basis of Magnetic Resonance Imaging X�
spin under a magnetic field, RF pulses, Bloch equations

Sept.27 Sequences and Reconstruction in MRI X�
K-space, aliasing, sequences

Oct. 18 Positron Emission Tomography: an introduction X�
general introduction, attenuation correction, level set methods

Nov. 8 Kinetics of the Tracer in PET X�
compartment model for 18FdG

Nov. 21 Dual-Modality Imaging ,
The challenges of PET/MR
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PET/MRI is a new, arising hybrid-imaging technology that
incorporates MRI morphological imaging and PET functional
imaging.
At the moment 3 companies declare availability of their PET/MRI
imaging devices:

PHILIPS

SIEMENS

GE
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Classic MLEM
Minimum Cross Entropy

Consider the linear system Ax = b, with b projection (PET) data
and x the image to reconstruct Maximum Likelihood Expectation
Maximization (MLEM) is based on a probabilistic argument (the
noise is assumed to be Poissonian).

L(x) = P(b|x) =

lp∏
i=1

(b∗i )bi

bi !
e−b∗i

where b∗ = Ax is the exact sinogram, i.e. the projection of the
exact solution x . Equivalently, it maximizes

l(x) = log(L(x)) =

lp∑
i=1

−(Ax)i + bi log(Ax)i
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Kuhn-Tucker conditions are then:

xj
∂l(x)

∂xj
= 0 if xj > 0

∂l(x)

∂xj
≤ 0 if xj = 0
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From the first equation (the second is always satisfied) we get

0 = xj
∂l(x)

∂xj
= xj

−
lp∑

i ′=1

ai ′,j +

lp∑
i=1

ai ,jbi
N2∑
j ′=1

ai ,j ′xj ′


this leads to the iterative scheme:

xj ←
xj

lp∑
i ′=1

ai ′,j

lp∑
i=1

ai ,jbi
N2∑
j ′=1

ai ,j ′xj ′
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If we write the scheme in a vectorial and multi-step form

1 bf := Ax (k)

2 bq := b./bf (punctual division)

3 xb = ATbq

4 sj =
∑

i ai ,j

5 x (k+1) = x (k). ∗ xb./s (product and division are made
elementwise)
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The goal of a reconstruction iterative scheme is to minimize the
distance D(b,Ax). For instance the least-squares method proposes
to minimize the euclidean distance

D1(b,Ax) =
∑
i

∑
j

ai ,jxj − bj

2

.

Note that using this distance leads to the normal equations.

9 of 16



Introduction
Reconstruction in PET/RM

Experimental results

Classic MLEM
Minimum Cross Entropy

The Bayesian methods are similar, but they add an extra penalty
term D2 to the objective function

Jβ(x) = D1(b,Ax) + βD2(x)

with the constant β ≥ 0 set up by the user.
Sometimes D2 can be the distance between the current image and
a prior image model p. In this case the objective function is

Jβ(x) = D1(b,Ax) + βD2(x , p).
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The cross-entropy or Kullback-Leiber distance is defined as it
follows

S(u, v) =
∑
i

ui log(ui/vi )− ui + vi .

Note that minimizing S(b,Ax) is equivalent to minimizing the
log-likelihood function l(x) described above.
So we minimize

Jβ(x) = S(b,Ax) + βS(x , p).
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Minimizing this function leads to the iterative scheme:

xj ←
xj∑

i ′

ai ′,j

∑
i

ai ,jbi∑
j ′

ai ,j ′xj ′
− β log(xj/pj)


This scheme is called MXE1 and converges provided the
non-negativity Kuhn-Tucker conditions∑

i

ai ,jbi∑
j ′

ai ,j ′xj ′
> β log(xj/pj)

so for β too large this condition is violated.

12 of 16



Introduction
Reconstruction in PET/RM

Experimental results

Classic MLEM
Minimum Cross Entropy

Another iterative scheme for solving the optimization problem is

xj ← pj exp

[
− 1

β

(∑
i

ai ,j −
∑
i

ai ,jbj∑
j ′ ai ,j ′xj ′

)]

this scheme is called MXE2. MXE2 satisfies the non-negativity
constraint for all β > 0.
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