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In the previous seminar we have introduced:
m the Axial Tomography problem.
m the related model: the Radon Transform Rf = g.
m a first method for the image reconstruction: FBP.
m the performances of this method.

In this seminar we will talk about the iterative methods for image
reconstruction.
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Given a basis of functions {b;(X)};=1.., that interpolates the
function f, i.e. such that

f()_() = zn: C,'b,'()_<) Vx € X
i=0

where X is properly chosen, then for the linearity of the Radon
transform

RF(Y) =) _ ciRbi(y) vy e Y ={(t,0)}.
i=0
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This is equivalent to the solution of
Af =c

where A(i,j) = Rb;(t;,0;) is a matrix N2 x Ip, f is the unknown
vector such that f; = f(x;) and c is the vector of the projection
data ¢ = Rf(tj, QJ').

The methods using this approach are known as Algebraic
Reconstruction Techniques or ART.
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Using the ART approach we may have to face some problems:

m underdetermined —> least squares
m ill-conditioned —— regularization

m huge —> sparseness
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We choose the natural pixel basis

bi(x,y) = Xp.(x,¥).

with P; the i-th pixel of the reconstructed image. We know the
Radon transform of each one of these items

Rbj(t,0) = meas(Lrg N P;)

where ;g = {t0 + s+ | s € R}.
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Since the matrix A is large and sparse, we can solve the system
Af = c by iterative methods.

m the initial vector £ is a blank.

m the image at step k, F(K) s projected and compared with the
data.

m the image is modified considering the error found in the
previous step.

The following methods are the most popular
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The Kaczmarz method projects the vector f(5) on k-th row of A.

. — AT . £(K)
G A T4
AT - A;

1

Flkt1) — (k) 4

i
to increase the speed we use
- AT . (k)
f(k+1) _ f(k) + A Cj i
AT A

1

A
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Maximum Likelihood Expectation Maximization (MLEM) is based
on a probabilistic argument (the noise is assumed to be
Poissonian).

7 (&)
L(f) = P(clf) =] *Lie 9

i=1

C,'!

where ¢* = Af is the exact sinogram, i.e. the projection of the
exact solution f. Equivalently, it maximizes

Ip
I(f) =log(L(f)) =Y _ —(Af); + Cjlog(Af); + K
i=1
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scheme in a vectorial and multi-step form

cf .= AF(K)
c9 := c./cf (punctual division)
fb=ATca

Bs=>,a,
Flk+1) — (k) fb./s (product and division are made
elementwise)
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Least Squares Conjugate Gradient (LSCG) is the conjugate
gradient method applied to the normal equation of the problem.
Initialization phase:

m given () initial value
m s =c— AFO)

m (0 = p0) = AT5(0)
m g0 = Ap©
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_ W2
" AT P
m (kD) — f(k) ap(k)
m s+ = 5K _ gq(k)
m (k1) — AT 5(K)
p(k+1))2
m 3= “,(k)‘z‘

LSCG example
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Now instead of the natural pixel basis we can use another basis:

Function name ‘ f
Ball X

B(2,0)(")
Gaussian esr
Wendland ¢35 o (1—er)?
Wu 11 1 (1—er)i(er+2)

with r = || x||2.
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Original phantom and kernel reconstruction with Gaussian kernel
and shape parameter ¢ = 1, after 50 iterations of LSCG.
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If ¢(x) = @(||x]|) is a radial function, then its Radon transform Rf
is readial, i.e. it depends only on t and it is even.

If (x —y) = K(x,y) is a radial function, ¢ € L}(R9), continuous,
bounded and positive definite on R2, then its Radon transform
Rf(t) is bounded and positive definite on R?, provided

Rf € L1(R).
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Theorem (Interpolation error bound for Kernel method)

Let f € C§°(B(0,1)) a b-band-limited function, and let g = Rf be
reliably sampled. Let K be the interpolating Kernel function such
that RK is a symmetric and strictly positive definite kernel and its
domain Q be such that OQ has regularity at least C*.

Then there exist positive constants hy and C such that, if

hX,Q < hg, then

N -
1F() = ZC' (M < 2|51 b\/; Chx allRf [ Nrw(e)

with hx o the meshsize.
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Iterative methods

Time and error test for MLEM (upper) and LSCG (lower) at
several iterations.
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Ertor for k terations of MLEM, with a relative noise of 10% Ertar for k terations of LECG, with a relative naise of 10%
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Error of the MLEM and LSCG algorithms with a noise of o = 10%
after several numbers of iterations.
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Iterative methods

Time of computation in seconds (left), error and error bound
(right) in co-norm of the kernel method for the Gaussian Kernel
with several shape parameters ¢ € [0.5, 10].
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Comparison

Iterative methods

oS- —+—FBP error b
—&—LSCG ermor
—*— Gaussian ermor

0sf- .

Error of FBP, LSCG, and Gaussian algorithms as the relative error
varies from 0 to 100%.
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——Lsca
—o— Gaussian
—*— Wendland

Computational times in seconds (left) and errors (right) for the
LSCG and its kernel versions. Along x we have the number of
iterations.
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