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Calendar of seminars

May 14 Introduction to Analytic Tomography X�
general introduction, Radon tranform, FBP

May 21 Reconstruction in X-ray computed tomography �
iterative methods, kernel methods

May 28 The mathematics behind SPECT/TC reconstruction
analytical and iterative hybrid reconstruction

June 4 Resolution of a Gamma Camera: experimental data and
analytical formula
resolution formulas

June 11 An alternative Radon transform for the correction of partial
volume effect
a modest proposal..
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In the previous seminar we have introduced:

the Axial Tomography problem.

the related model: the Radon Transform Rf = g .

a first method for the image reconstruction: FBP.

the performances of this method.

In this seminar we will talk about the iterative methods for image
reconstruction.
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Given a basis of functions {bi (x̄)}i=1...n that interpolates the
function f , i.e. such that

f (x̄) =
n∑

i=0

cibi (x̄) ∀x̄ ∈ X

where X is properly chosen, then for the linearity of the Radon
transform

Rf (ȳ) =
n∑

i=0

ciRbi (ȳ) ∀ȳ ∈ Y = {(tj , θj)}.
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This is equivalent to the solution of

Af = c

where A(i , j) = Rbi (tj , θj) is a matrix N2 × lp, f is the unknown
vector such that fi = f (xi ) and c is the vector of the projection
data cj = Rf (tj , θj).
The methods using this approach are known as Algebraic
Reconstruction Techniques or ART.
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Using the ART approach we may have to face some problems:

underdetermined −→ least squares

ill-conditioned −→ regularization

huge −→ sparseness
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Kaczmarz
MLEM
LSCG

We choose the natural pixel basis

bi (x , y) =χPi
(x , y).

with Pi the i-th pixel of the reconstructed image. We know the
Radon transform of each one of these items

Rbi (t, θ) = meas(`t,θ ∩ Pi )

where `t,θ = {t θ̄ + s θ̄⊥ | s ∈ R}.
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Kaczmarz
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Since the matrix A is large and sparse, we can solve the system
Af = c by iterative methods.

the initial vector f (0) is a blank.

the image at step k, f (k), is projected and compared with the
data.

the image is modified considering the error found in the
previous step.

The following methods are the most popular
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Kaczmarz
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The Kaczmarz method projects the vector f (k) on k-th row of A.

f (k+1) = f (k) +
ci − AT

i · f (k)

AT
i · Ai

Ai

to increase the speed we use

f (k+1) = f (k) + λk
ci − AT

i · f (k)

AT
i · Ai

Ai

9 of 25



Iterative methods
Algebraic reconstruction techniques

Kernel methods
Experiments

Kaczmarz
MLEM
LSCG

x(0)

x(1)

x(2)

x(3)

A1

A2

A3

x(4)

b

b

b

b

b b
b

f (k+1) = f (k) +
ci − AT

i · f (k)

AT
i · Ai

Ai
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Maximum Likelihood Expectation Maximization (MLEM) is based
on a probabilistic argument (the noise is assumed to be
Poissonian).

L(f ) = P(c |f ) =

lp∏
i=1

(c∗i )ci

ci !
e−c

∗
i

where c∗ = Af is the exact sinogram, i.e. the projection of the
exact solution f . Equivalently, it maximizes

l(f ) = log(L(f )) =

lp∑
i=1

−(Af )i + Ci log(Af )i + K
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scheme in a vectorial and multi-step form

1 c f := Af (k)

2 cq := c ./c f (punctual division)

3 f b = AT cq

4 sj =
∑

i ai ,j

5 f (k+1) = f (k). ∗ f b./s (product and division are made
elementwise)
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Least Squares Conjugate Gradient (LSCG) is the conjugate
gradient method applied to the normal equation of the problem.
Initialization phase:

given f (0) initial value

s(0) = c − Af (0)

r (0) = p(0) = AT s(0)

q(0) = Ap(0)
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α = |r (k)|2
|q(k)|2

f (k+1) = f (k) + αp(k)

s(k+1) = s(k) − αq(k)

r (k+1) = AT s(k)

β = |r (k+1)|2
|r (k)|2

p(k+1) = r (k+1) + βp(k)

q(k+1) = Ap(k+1)

LSCG example
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Introducing a new basis
Some Theorems

Now instead of the natural pixel basis we can use another basis:

bi (x̄) = B(x̄ − x̄i ) = K (x̄ , x̄i )

with B a (essentially) compact supported and radial.

Function name f

Ball χB( 1
ε
,0)(r)

Gaussian e−ε
2r2

Wendland ϕ2,0 (1− εr)2
+

Wu ψ1,1 (1− εr)2
+(εr + 2)

with r = ‖x‖2.
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Introducing a new basis
Some Theorems

Original phantom and kernel reconstruction with Gaussian kernel
and shape parameter ε = 1, after 50 iterations of LSCG.
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Lemma

If φ(x) = ϕ(‖x‖) is a radial function, then its Radon transform Rf
is readial, i.e. it depends only on t and it is even.

Theorem

If φ(x − y) = K (x , y) is a radial function, φ ∈ L1(Rd), continuous,
bounded and positive definite on R2, then its Radon transform
Rf (t) is bounded and positive definite on R1, provided
Rf ∈ L1(R).
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Theorem (Interpolation error bound for Kernel method)

Let f ∈ C∞0 (B(0, 1)) a b-band-limited function, and let g = Rf be
reliably sampled. Let K be the interpolating Kernel function such
that RK is a symmetric and strictly positive definite kernel and its
domain Ω be such that ∂Ω has regularity at least C 1.
Then there exist positive constants h0 and C̃ such that, if
hX ,Ω ≤ h0, then

‖f (·)−
n∑

i=0

ciKi (·)‖L∞ ≤ 2|S1| b
√

N

18
C̃hX ,Ω‖Rf ‖NRK (Ω)

with hX ,Ω the meshsize.
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How to choose the shape parameter?
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Iterative methods

Time and error test for MLEM (upper) and LSCG (lower) at
several iterations.
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Iterative methods

Error of the MLEM and LSCG algorithms with a noise of σ = 10%
after several numbers of iterations.
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Iterative methods

Time of computation in seconds (left), error and error bound
(right) in ∞-norm of the kernel method for the Gaussian Kernel
with several shape parameters ε ∈ [0.5, 10].
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Iterative methods

Comparison

Error of FBP, LSCG, and Gaussian algorithms as the relative error
varies from 0 to 100%.
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Iterative methods

Computational times in seconds (left) and errors (right) for the
LSCG and its kernel versions. Along x we have the number of
iterations.
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