# An alternative Radon transform for the correction of partial volume effect 

Davide Poggiali

May 14 Introduction to Analytic Tomography general introduction, Radon tranform, FBP

May 21 Reconstruction in X-ray computed tomography iterative methods, kernel methods

May 28 The mathematics behind SPECT/TC reconstruction analytical and iterative hybrid reconstruction
June 4 Resolution of a Gamma Camera: experimental data and analytical formula resolution formulas
June 28 An alternative Radon transform for the correction of partial volume effect
 a modest proposal..

## Analytical Resolution

$$
R_{c}=D\left(1+\frac{x+c}{L_{e f f}}\right)
$$

The resolution of the machine depends on the collimator resolution and on the intrinsic resolution (the resolution of the crystal and the electronics).

$$
R_{s}=\sqrt{R_{c}^{2}+R_{i}^{2}}
$$

Introduction and recalls


Introduction and recalls The Resolution-based Radon Transfrom Pratical isuues Experiments

Resolution and related issues
The Radon Transform

FWHM


FWHM


## Partial volume effect



In order to model correctly the tomography machine we will make some assumptions:

- all rays have no width and we can consider them as straight lines.
- all rays at angle $\theta$ are parallel.
- the machine runs $/$ scans at the angles $\left(\theta_{1}, \ldots, \theta_{l}\right)$; the detectors move on a circle (typically $I=120,60$ ).
- for each scan $j \in 1, \ldots$, I the machine gets $p$ linear samples (typically $p=N$, or $p=128$ or $p=64$ ).
- the total time of acquisition is relatively short so is indifferent to run an acquisition before or after another one.
- the reconstructed image has dimension $N \times N$ (typically

$$
N=128 \text { or } N=64)
$$


$\mathcal{R} f(t, \theta)=\int_{\mathbb{R}} f(t \cos \theta-s \sin \theta, t \sin \theta+s \cos \theta) d s$

Now we note that this model is also based on another assumption: the ray is a whole straight line, so the collimator "sees" all the rays in his line, also the rays behind it.
This is not the only unreal hypothesis of the Radon transform: in fact not only the parallel rays will enter, because no collimator can have a resolution equal to zero!

Now the resolution is defined as the FWHM of the PSRF (Point Source Response Function), which is the data collected by the machine using a point source as input.
The machine sees every image I in input as

$$
I=I_{0} * P S R F
$$

Where $I_{0}$ is the exact map and $I$ is the map as seen by the machine. By '*' of course we mean the 2-D convolution product.

Now we make the (realistic) hypothesis that the PRSF function is a Gaussian

$$
\operatorname{PRSF}(x)=\exp \left(-\varepsilon^{2} x^{2}\right)
$$

Since we know that the FWHM of such function is $F W H M=\frac{2 \sqrt{\ln 2}}{\varepsilon}=R(d)$ where $d$ is the distance between source and collimator and $R=R_{s}$.

$$
\operatorname{PRSF}(x)=\exp \left(-\frac{4 \ln 2}{R^{2}(d)} x^{2}\right)
$$

if we put this expression into the new transform we gets

$$
\Re f(t, \theta)=\iint_{[-r, r]^{2}} \exp \left(-\frac{4 \ln 2 \tau^{2}}{R^{2}(r-s)}\right) f\left((t-\tau) \bar{\theta}+s \bar{\theta}^{\perp}\right) d s d \tau
$$

Since $\tau$ is the distance between the parallel ray and the other parallel rays we are considering and the distance source-collimator is $r-s$. The expression for $R^{2}$ is simply $R(d)=a d^{2}+b d+c$.

Since the integral is not easy to calculate for $f=\chi_{P_{i}}$, we calculate the matrix using the following approximation

$$
R_{i, j}=\sum_{j^{\prime} \in[j-\lambda, j+\lambda]} \exp \left(-\frac{4 \ln 2\left(d\left(j-j^{\prime}\right)^{2}\right)}{R^{2}\left(D_{j, j^{\prime}}\right)}\right) A_{i, j^{\prime}}
$$

where $A$ is the (classical) natural pixel matrix, $d$ is the distance between a ray and the next $\left(d=\frac{N \sqrt{2}}{p}\right), \lambda$ is an integer such that

$$
\exp \left(-\frac{4 \ln 2\left(\lambda^{2}\right)}{R^{2}\left(D_{j, j^{\prime}}\right)}\right) \ll 1
$$

and $D$ is a matrix that contains the distances between the $j^{\prime}-t h$ pixel and the collimator when the angle is $\theta_{j}$.


The reconstruction using the matrix $R$ is more accurate because the transformation has been done using $R$.
altezza=73 su 128.

altezza=73 su 128.


In this figure we can observe that the reconstruction using the matrix $R$ is more accurate, since the partial volume effect seems to be corrected.

## Pros:

- The new method is as fast as the classical one
- From the first experiments it seems to do what we asked

■ The projection of a phantom looks like a sinogram.
Cons:

- New matrix as sparse as the classical one
- There is not a strong theory that supports our choices
- This kind of approach is completely work-in-progress.


## Essential bibliography

E
Feeman, The mathematics of medical imaging: A beginners guide, Springer, 2010

Hansen P.C., Hansen M., AIR Tools - A MATLAB Package of Algebraic Iterative Reconstruction Methods, Journal of Computational and Applied Mathematics, 2011

Natterer F., The mathematics of computerized tomography, SIAM: Society for Industrial and Applied Mathematic, 2001
Toft P., The Radon transform; theory and implementation, Ph.D. thesis. Department of Mathematical Modeling, Technical University of Denmark, 1996
國 Wernick M.N., Aarsvold J.N., Emission Thomography. The fundamentals of PET and SPECT, Elsevier Academic press, 2004

