Sequences and Reconstruction in MRI

Davide Poggiali

September 26, 2013

Calendar of seminars

Sept. 19 Physical Basis of Magnetic Resonance Imaging

spin under a magnetic field, RF pulses, Bloch equations
Sept. 26 Sequences and Reconstruction in MRI \square
K-space, aliasing, sequences
Oct. 10 Positron Emission Tomography: an introduction \square general introduction, attenuation correction, level set methods
Oct. 17 Kinetics of the Tracer in PET \square
compartment model for ${ }^{18} \mathrm{FdG}$
Oct. 31 Dual-Modality Imaging

First Bloch equation (only static field)

$$
\dot{\mathbf{M}}=\gamma \mathbf{M} \times \mathbf{B}-\left(\frac{M_{x}}{T_{2}}, \frac{M_{y}}{T 2}, \frac{M_{z}-M_{e q}}{T_{1}}\right)
$$

(Bloch-1)

The solution to this ODE is

$$
\left\{\begin{array}{l}
M_{x}=e^{-t / T_{2}}\left(M_{x, 0} \cos \omega_{0} t-M_{y, 0} \sin \omega_{0} t\right) \tag{1}\\
M_{y}=e^{-t / T_{2}}\left(M_{x, 0} \sin \omega_{0} t+M_{y, 0} \cos \omega_{0} t\right) \\
M_{z}=M_{z, 0} e^{-t / T_{1}}+M_{e q}\left(1-e^{-t / T_{1}}\right)
\end{array}\right.
$$

Second Bloch equation (static field and RF pulse, in rotating reference)

$$
\left\{\begin{array}{l}
\dot{u}=0 \\
\dot{v}=\gamma B_{1} M_{z} \\
\dot{M}_{z}=-\gamma B_{1} v
\end{array}\right.
$$

(Bloch-2)

The solution of this equation is simple

$$
\begin{cases}u & =u_{0} \tag{2}\\ v & =v_{0} \cos \omega_{1} t-M_{z, 0} \sin \omega_{1} t \\ M_{z} & =v_{0} \sin \omega_{1} t+M_{z, 0} \cos \omega_{1} t\end{cases}
$$

Third Bloch equation (static field and gradient, in rotating reference)

$$
\left\{\begin{array}{l}
\dot{u}=\gamma B_{g} v \tag{Bloch-3}\\
\dot{v}=-\gamma B_{g} v \\
\dot{M}_{z}=0
\end{array}\right.
$$

the solution to this ODE is similar to the previous one

$$
\begin{cases}u & =u_{0} \cos \omega_{g} t-v_{0} \sin \omega_{g} t \tag{3}\\ v & =u_{0} \sin \omega_{g} t+v_{0} \cos \omega_{g} t \\ M_{z} & =M_{z, 0}\end{cases}
$$

An RF pulse has the effect to flip the vector \mathbf{M} from the axis z of an angle $\theta=\omega_{1} \tau$ after a time τ. Thus we can apply following pulses:

- a general θ-pulse: $\tau=\frac{\theta}{\omega_{1}}$
- a $\frac{\pi}{2}$-pulse: $\tau_{1}=\frac{\pi}{2 \omega_{1}}$.

After this pulse the aggregate magnetic momentum is

$$
\mathbf{M}\left(\tau_{1}\right)=\left(u_{0}, M_{z, 0}, v_{0}\right)
$$

- a π-pulse: $\tau_{2}=\frac{\pi}{\omega_{1}}$.

After this pulse the aggregate magnetic momentum is

$$
\mathbf{M}\left(\tau_{2}\right)=\left(u_{0},-v_{0},-M_{z, 0}\right)
$$

We can play with pulses to get more informations about the precession. The following sequences are the most popular ones:
1 inversion recovery
[2 saturation recovery
3 spin-echo

Inversion recovery: after the we apply a π-pulse, we wait a time τ, then we apply a $\frac{\pi}{2}$-pulse and we measure \mathbf{M}. We wait for the system to get back to the equilibrium of (1) and we repeat several times to increase the signal-to-noise ratio and for several values of τ. This sequence is shorted as follows

$$
\left(\pi-\tau-\frac{\pi}{2}-A T-t_{\infty}\right)_{n}
$$

where $A T$ stands for acquisition time, and t_{∞} is a long time needed to get back to the equilibrium, usually $t_{\infty} \approx 4 T_{1}$.
From the third component of (1) we get

$$
M_{z}(\tau)-M_{e q}=\left(M_{z, 0}-M_{e q}\right) \exp \left(-\frac{\tau}{T_{1}}\right)
$$

This means that we can obtain $-1 / T_{1}$ as the slöpe of $\log \left(M_{z}(\tau)-M_{\text {eq }}\right)$.

Saturation recovery: This sequence is shorted as

$$
\left(\frac{\pi}{2}-H s-\tau-\frac{\pi}{2}-A T-H s\right)_{n}
$$

Where Hs is a pulse that destroys the homogeneity of the field B_{0}; after a time τ the magnetization is partially recovered, the pulse fplips it on the $x y$-plane. Again, we obtain $-1 / T_{1}$ as the slöpe of $\log \left(M_{z}(\tau)-M_{e q}\right)$.

Spin echo: This sequence is shorted as

$$
\left(\frac{\pi}{2}-\tau-\pi\right)_{n}
$$

After 2τ the amplitude of the transverse magnetization will be relaxed by a factor

$$
\exp \left(2 \tau / T_{2}\right)
$$

T2* is the real time constant of loss in the $x y$-plane, because the field B_{0} is not really homogeneous. The relation between $T 2$ and $T 2^{*}$ is quite simple:

$$
\frac{1}{T 2^{*}}=\frac{1}{T 2}+\gamma \triangle \mathbf{B}_{0}
$$

where $\triangle B_{0}$ is the maximum variance of B_{0}.

The aim of reconstruction is to create a 2D map of the proton density $\rho(\mathbf{x})$ on each slice. For this purpose we consider only the transverse component of \mathbf{M},

$$
M^{*}=M_{x}+i M_{y}
$$

and same thing for the signal received from the coils

$$
s=S_{x}+i S_{y}
$$

For Faraday's law the magnetic field generated by the body induces an electromotive force to the coils

$$
\mathbf{S}(\mathbf{t})=\frac{d}{d t} \Phi_{\text {loop }}=k \frac{d}{d t} \int_{\text {loop }} \rho(\mathbf{x}) \mathbf{M} d \mathbf{x}
$$

Now, if we consider a tiny slice over the z-axis, we can rewrite the previous formula as

$$
s(t)=k_{1} \frac{d}{d t} \int_{\text {loop }} \rho(\mathbf{z}) M^{*}(\mathbf{z}) d z
$$

with $\mathbf{z} \in \mathbb{C}^{2}$.

If we apply a $\frac{\pi}{2}$-pulse, then a gradient for the selection of a slice, we get

$$
M^{*}=\exp \left(-\frac{t}{T_{2}}+i \omega_{0} t+i \omega_{g} t\right)
$$

then we obtain

$$
s(t)=k_{2} \exp \left(-\frac{t}{T_{2}}+i \omega_{0} t\right) \int_{\text {loop }} \rho(\mathbf{z}) \exp \left(i \omega_{g} t\right) d \mathbf{z}
$$

We remember that $\omega_{g}=-\gamma B_{g}=-\gamma \mathbf{G} \cdot \mathbf{x}$ then, if we set

$$
G=G_{x}+i G_{y}
$$

we get

$$
s(t)=k_{3} \exp \left(-\frac{t}{T_{2}}+i \omega_{0} t\right) \int_{\text {loop }} \rho(\mathbf{z}) \exp (-i t \gamma G \cdot \mathbf{z}) d \mathbf{z}
$$

If we look at the previous formula, we have found that

$$
s(t) \propto \mathcal{F}_{2}[\rho](k(t))
$$

where of course $k(t)=-\frac{t \gamma}{2 \pi} G$.
So we store the values of $\frac{s(t)}{k_{3} \exp \left(-\frac{t}{T_{2}}+i \omega_{0} t\right)}$ in a matrix called
K-space and we apply the 2-D IFFT algorithm to recover the slice image.
(Re-)Introduction
Pulses and basic sequences K-space and reconstruction

TR, TE and Sequences

K-space

Reconstructed image

An example of K-space and reconstructed image.

We can also use a phantom to obtain a simulated K-space.

MRI is a multi-parametric imaging system: in fact you can play with some parameters to obtain different contrast between the tissues.
We now introduce some of these parameters.

TR, Repetition Time is the time interval between the application of a pulse and another.
After TR the longitudinal magnetization of the vector \mathbf{M} will be

$$
M_{z}(t)=M_{e q}\left(1-\mathrm{e}^{-T R / T 1}\right)
$$

so each FID signal will be proportional to

$$
\left(1-\mathrm{e}^{-T R / T 1}\right)
$$

This means that the longitudinal magnetization will not reach $M_{\text {eq }}$ unless we set $T R \gg 4 T 1$

TE stands for echo delay time (or time to echo). Instead of making the measurement immediately after the RF pulse (impossible), we wait a short period of time and then make the measurement.

A complete example of spin-echo sequence.

- T1-weighted short TR Useful in scanning brain to see contrast between gray and white matter.

■ T2-weighted long TE, long TR
Used to see the contrast between water and fat.
■ T2*-weighted long TE, long TR
We use it to see particulars in venous blood.
■ Proton density weighted short TE, long TR
We try not to consider the effect of $T 1$ or $T 2$.
(Re-)Introduction

Time \rightarrow
(Re-)Introduction

Time \rightarrow

Essential bibliography

Callaghan P., Introductory NMR \& MRI, a video course, http://www.youtube.com/watch?v=7aRKAXD4dAg

Epstein C.L., Introduction to the mathematics of Medical Imaging, Second Edition, Siam, 2008, Ch14.

Feeman T.G., The mathematics of medical imaging: A beginners guide, Springer, 2010, Ch10.

Hashemi R.H., Bradley W.G. Jr, Lisanti C.J., MRI, the Basics, Lippincott Williams \& Wilkins, 2010.

